RECOGNISING ACHIEVEMENT
GCE

Physics A

Advanced GCE

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 08707706622

Facsimile: 01223552610
E-mail:
publications@ocr.org.uk

Q1	Expected Answers	Marks	Additional guidance
(a)(i)	A body will remain at rest or continue to move with constant velocity unless acted upon by a force (WTTE)	B1	Do not allow speed unless "speed in a straight line" is stated. Allow "uniform motion"
(a)(ii)	The force which gives a mass of 1 kg an acceleration of $1 \mathrm{~m} \mathrm{~s}^{-2}$	B1	Allow $1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}$
(b)(i)	Use of $v=u+a t$ OR $a=(v-u) / t \Rightarrow a=(55-0) / 2.2$ $a=25\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	
(b)(ii)	$\begin{aligned} \text { Use of } s & =u t+1 / 2 a t^{2} \text { e.g. } s=0+1 / 2 \times 25 \times 2.2^{2} \\ s & =60.5(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow other valid solutions e.g. using $v^{2}=u^{2}+2 \mathrm{as}$
(b)(iii)	$F=m a=3.2 \times 10^{4} \times 25=8.0 \times 10^{5}(\mathrm{~N})$	A1	Allow ecf from (b)(i)
(c)(i)	towards the centre of the circle.	B1	Do not allow a bare "perpendicular to the velocity" Do not allow "in the same direction as the acceleration."
(c)(ii)	$\text { use } \begin{aligned} F=m v^{2} / r \text { e.g. } F & =\left(3.2 \times 10^{4} \times 120^{2}\right) / 870 \\ F & =5.3 \times 10^{5}(529655)(\mathrm{N}) \end{aligned}$	$\begin{aligned} & \hline \text { C1 } \\ & \text { A1 } \end{aligned}$	If 55 is used instead of 120 for the velocity $\mathrm{F}=1.1 \times 10^{5} \mathrm{~ms}^{-1}$ and scores 1 mark
(d)(i)	At top of the circle when the weight provides/equals the required centripetal force	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow "when the resultant force = weight"
(d)(ii)	$\begin{aligned} & \text { realisation that acc }=g\left(\text { OR 9.81) AND (hence) } v^{2} / r=g\right. \\ & \{v=\sqrt{ }(g r)=\sqrt{ }(9.81 \times 1500)\} \Rightarrow v=120\left(\mathrm{~m} \mathrm{~s}^{-1}\right)(121.3) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Accept 121.24 as this corresponds to 9.8, do not allow 122.5 since this assumes $g=10 \mathrm{~ms}^{-2}$
	Total	14	

Q2	Expected Answers	Marks	Additional guidance
(a)(i)	Force/acceleration is proportional to displacement (from equilibrium position) (Resultant force) force/acceleration is (always) towards equilibrium position (WTTE, e.g. allow fixed point).	B1	Allow force/acceleration is in opposite direction to the displacement. Allow acc $\propto x$, provided x is identified as the displacement for $1^{\text {st }}$ mark. $2^{\text {nd }}$ mark only scored if -ve sign used and explained.
(a)(ii)	True; False False; False	B2	-1 for each error stop at zero Assume \checkmark means true and X means false Do not credit blank spaces
(b)	Measurements: angle measured with protractor stated or shown on the diagram stop-watch/ms timer/data-logger to measure time stated or shown on the diagram Conclusion: compare periods for different angles stated/implied OR plot period against angle major difficulty: angle of swing decreases during the timing of the swing solution: e.g. measure time for $1 / 4,1 / 2$ or 1 swing accurately (using electronic timer/datalogger) OR use data logger with motion sensor to record many swings and analyse how the period changes over time OR video the motion with onscreen timer and analyse	B1 B1 B1 M1 A1	Allow ruler used to measure initial and subsequent displacement/amplitude if explained. Allow table of results with correct column headings i.e. at least angle and period Do not allow 'time is short so measure nT and divide by n to reduce (\%) error'.(WTTE)
	Total	9	

\begin{tabular}{|c|c|c|c|}
\hline Q3 \& Expected Answers \& Marks \& Additional guidance \\
\hline (a) \& Force per unit mass (at a point in a gravitational field). \& B1 \& Accept \(g=F / m\) if \(F\) and \(m\) are identified \\
\hline (b)(i) \& \begin{tabular}{l}
Recognition that inverse square law needs to be verified: e.g. \(g \propto\) \(1 / r^{2}\) \\
hence \({g r^{2}}^{2}\) constant \(\Rightarrow 9.8 \times 6400^{2}=4.0 \times 10^{8}\left(\right.\) or \(\left.4 \times 10^{14}\right)\) \\
AND \(2.7 \times 10^{-3} \times\left(3.8 \times 10^{5}\right)^{2}=3.9 \times 10^{8}\left(\right.\) or \(\left.3.9 \times 10^{14}\right)\) \\
(n.b values in brackets correspond to radius in metres) \\
Any appropriate comment consistent with the calculations e.g. values are close enough (to verify the relationship).
\end{tabular} \& B1
B1

B1 \& | Do not accept a bare $g=G M / r^{2}$ unless G and M are stated as constants or following calculations shows this. |
| :--- |
| They must use values in table and do both calculations for this mark |
| Allow other valid approaches |
| e.g. g ratio compared to $1 / r^{2}$ ratio (3630 and 3530) OR ($2.75 \times 10^{-4}, 2.84 \times 10^{-4}$,) |

\hline (b)(ii) \& $$
\begin{aligned}
& \left(m g=G m M / r^{2} \Rightarrow M=g r^{2} / \mathrm{G}\right) \\
& M=9.81 \times\left(6.4 \times 10^{6}\right)^{2} / 6.67 \times 10^{-11} \\
& M=6.024 \times 10^{24} \mathrm{~kg}
\end{aligned}
$$ \& C1

A1 \& | (this formula is given on data sheet) |
| :--- |
| Correct substitution into formula |
| Allow 6.018×10^{24} this is for $g=9.8$ and allow any value between 6.0×10^{24} and 6.03×10^{24} but not 6×10^{24} |
| Also allow data for the moon to be used i.e $M_{\mathrm{E}}=2.7 \times 10^{-3} \times 3.8 \times 10^{8} / 6.67 \times 10^{-11}=$ |
| $5.846 \times 10^{24} \mathrm{~kg} \approx 6 \times 10^{24} \mathrm{~kg}$ |

\hline (b)(iii) \& $$
\text { volume }=(4 / 3) \pi r^{3}=(4 / 3) \pi\left(6.4 \times 10^{6}\right)^{3}\left(=1.10 \times 10^{21} \mathrm{~m}^{3}\right)
$$

$$
\rho=M / V=6.0 \times 10^{24} / 1.10 \times 10^{21}=5500(5464)\left(\mathrm{kg} \mathrm{~m}^{-3}\right)
$$ \& C1

A1 \& | mark for correct substitution e.g. 6.4×10^{6} (in $\mathrm{m})$ used and not $6.4 \times 10^{3}(\mathrm{~km})$ |
| :--- |
| allow ecf from b (ii) for cand's value of M but no ecf for wrong volume formula |
| If $r=6.4 \times 10^{3}$ is used $\mathrm{V}=1.1 \times 10^{12} \Rightarrow$ $\rho=5.5 \times 10^{12}$ and scores 1 mark |

\hline \& Total \& 8 \&

\hline
\end{tabular}

Q4	Expected Answers	Mark	Additional guidance
(a)(i)	Latent heat of fusion.	B1	QWC fusion spelled correctly ignore any reference to specific.
(a)(ii)	Latent heat of vaporisation.	B1	QWC Vaporisation spelled correctly. Accept vaporization but not vapourisation.
(b)(i)	$\begin{aligned} \mathrm{E} & =m c \Delta \theta \text { used correctly e.g. } 0.8 \times 4200 \times 82 \\ & =2.8 \times 10^{5}(\mathrm{~J})(275520) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	$0.8 \times 4200 \times(82+273)$ scores zero
(b)(ii)	Any two from: Some heat/energy used to heat kettle Some heat/energy lost to surroundings/air/environment. Some heat/energy used to boil water before kettle switches off	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Do not allow "some heat lost" i.e. they must state where/how Do not allow "kettle if not 100\% efficient". Do not allow "energy lost as sound/light"
(b)(iii)	$1 \mathrm{kWh}=1000 \times 3600=3.6 \times 10^{6} \mathrm{~J}$ Wastage per year $=\left(2.8 \times 10^{5} \times 365\right) / 3.6 \times 10^{6}=28 \mathrm{kWh}$ (27.9)	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow 1 mark for energy lost per year = 1.02×10^{8} Joules Allow ecf from (b)(i)
	Total	8	

Q5	Expected answers	Mark	Additional guidance
(a)(i)	A collision with no change / loss of kinetic energy.	B1	Allow coeff't of restitution = 1
(a)(ii)	Any 3 from Volume of particles negligible compared to volume of vessel OR molecules much smaller than distance between them No intermolecular forces acting (other than during collisions) OR molecules only have kinetic energy (and no PE) Particles travel in straight lines/at uniform velocity between collisions OR force of gravity on molecules is negligible time of collisions much smaller than time between collisions gas consists of a large number of molecules moving randomly (both needed for the mark)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	do not allow a bare "negligible volume of molecules " Do not allow "collisions between molecules are elastic" because this is given in the question. do not allow a bare "negligible time of collisions" Do not allow a bare "rapid random motion"
(b)(i)	$\begin{aligned} \Delta p & =m v-m u \\ & =4.8 \times 10^{-26}[500-(-500)]=4.8 \times 10^{-23} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	2.4×10^{-23} scores zero
(b)(ii)	$\begin{aligned} & \text { (time between collisions }=0.4 / 500 \mathrm{~s} \text {) } . \text { Number of collisions/sec. }= \\ & 500 / 0.4=\underline{1250} \end{aligned}$	A1	Correct answer only
(b)(iii)	(Mean) force $=\Delta p / t$ OR Force $=$ rate of change of momentum OR Impulse $=$ change in momentum Force $=1250 \times 4.8 \times 10^{-23} / 1=6.0 \times 10^{-20} \mathrm{~N}$	C1	Allow ecf from (b)(i) and (b)(ii) e.g. if 2500 is used from (b)(ii) $\mathrm{F}=2500 \times 4.8 \times 10^{-23}=1.2 \times 10^{-19} \mathrm{~N}$ and this scores 2 marks
(b)(iv)	Same value as candidate's (b)(iii) due to Newton's third law OR this force acts in opposite direction	B1	OR -ve sign shown
(c)(i)	$3 \times 6 \times 10^{23}=1.8 \times 10^{24}$	B1	1.806×10^{24} if 6.02 is used
(c)(ii)	(very) large number of particles that are moving randomly means that at any instant the number of collisions on each face will be the same (WTTE)	B1	Allow no gravitational forces and hence uniform density
(c)(iii)	(mean) KE/speed of molecules increases Increased rate of collisions with wall OR 'harder' collisions with wall	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Also allow greater change of momentum per collision (WTTE) Not just "more collisions".
	Total	14	

Q6	Expected answers	Mark	Additional guidance
(a)(i)	Straight line (judged by eye)with positive slope AND passing through the origin	B1	correct answer only
(a)(ii)	$8.31\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$	B1	Allow R and molar gas constant, but do not allow $p V I T$ OR $n R$
(b)(i)	$-40^{\circ} \mathrm{C}=233 \mathrm{~K}$, AND $250^{\circ} \mathrm{C}=523 \mathrm{~K}$ Use of $V_{1} / T_{1}=V_{2} / T_{2} 2.4 \times 10^{-2} / 233=V_{2} / 523$ $V_{2}=0.053(8)\left(\mathrm{m}^{3}\right)$	M1 C1 A1	No marks scored if $40^{\circ} \mathrm{C}$ and/or $250^{\circ} \mathrm{C}$ are used Accept other correct versions.
(b)(ii)	$\begin{aligned} \text { Use of } p & =n R T / V=1.5 \times 8.31 \times 233 / 2.4 \times 10^{-2} \\ & =1.21 \times 10^{5}(\mathrm{~Pa}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow $T=523$ and $V=0.053$ hence $p=1.2 \times 10^{5}$ Allow ecf from (b)(i)
	Total	7	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

